The Fourier transform of vector-valued functions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Vector Valued Fourier Transform and Compatibility of Operators*

is the dual group of G, and p ′ the conjugate exponent of p. An operator T between Banach spaces X and Y is said to be compatible with the Fourier transform F G if F G ⊗ T : Lp(G)⊗X → Lp′ (G ′ )⊗ Y admits a continuous extension [F , T ] : [Lp(G), X ] → [Lp′ (G ′ ), Y ]. We show that if G is topologically isomorphic with R×Z×F, where l and m are nonnegative integers and F is a compact group with...

متن کامل

Holomorphic vector-valued functions

exists. The function f is continuously differentiable when it is differentiable and f ′ is continuous. A k-times continuously differentiable function is C, and a continuous function is C. A V -valued function f is weakly C when for every λ ∈ V ∗ the scalar-valued function λ◦ f is C. This sense of weak differentiability of a function f does not refer to distributional derivatives, but to differe...

متن کامل

Real-valued fast Fourier transform algorithms

This tutorial paper describes the methods for constructing fast algorithms for the computation of the discrete Fourier transform (DFT) of a real-valued series. The application of these ideas to all the major fast Fourier transform (FFT) algorithms is discussed, and the various algorithms are compared. We present a new implementation of the real-valued split-radix FFT, an algorithm that uses few...

متن کامل

The Fourier transform of multiradial functions

We obtain an exact formula for the Fourier transform of multiradial functions, i.e., functions of the form Φ(x) = φ(|x1|, . . . , |xm|), xi ∈ Rni , in terms of the Fourier transform of the function φ on Rr1 × · · · ×Rrm , where ri is either 1 or 2.

متن کامل

Differentiation of Vector-Valued Functions

This important result is listed in the theorem on the next page. Note that the derivative of the vector-valued function is itself a vector-valued function. You can see from Figure 12.8 that is a vector tangent to the curve given by and pointing in the direction of increasing values. tr t r t r f t i g t j lim t→0 f t t f t t i lim t→0 g t t g t t j lim t→0 f t t f t t i g t t g t t j lim t→0 f ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasgow Mathematical Journal

سال: 1985

ISSN: 0017-0895,1469-509X

DOI: 10.1017/s0017089500005978